

Conceptual Physics

TWELFTH EDITION

Paul G. Hewitt

ALWAYS LEARNING

A Conceptual Approach to Physics—Now with MasteringPhysics®!

Since defining this course 30 years ago, Paul Hewitt's best-selling text continues as the benchmark by which all others are judged. In **Conceptual Physics with MasteringPhysics®**, **Twelfth Edition**, Paul Hewitt integrates a compelling text and the most advanced media to make physics interesting, understandable, and relevant for non-science majors. The **Twelfth Edition** will delight students with informative and fun Hewitt-Drew-It screencasts, updated content, applications, and new learning activities in **MasteringPhysics**.

NEW! A new interior design provides an attractive, fresh, and accessible new look, updating a classic text to be even more student friendly.

NEW! Over 200 QR codes 🕨

throughout the book allow students to use a mobile device to instantly watch Paul Hewitt's video demonstrations and Hewitt-Drew-It screencasts to prepare for lecture and gain a better conceptual understanding of physics.

NEW! Updated applications are

available for digital technology, environment, and energy. These topics are at the forefront of everyone's consciousness these days and an intelligent awareness of their scientific foundations will give rise to better decision making in the political arena.

490 PART SIX LIGHT Red Green Violet FIGURE 26.5 INTERACTIVE FIGURE Relative wavelengths of red, green, and violet light. Violet light nas nearly twice the frequency of red light and half the wavelength.

different wavelengths—waves of low frequencies have long wavelengths, and waves of high frequencies have short wavelengths. For example, since the speed of the wave is 300,000 km/s, an electric charge oscillating once per second (1 Hz) will produce a wave with a wavelength of 300,000 km. This is because only one wavelength is generated in 1 second. If the frequency of oscillation were 10 Hz, then 10 wavelengths would be formed in 1 second, and the corresponding wavelength would be 30,000 km. A frequency of 10,000 Hz would produce a wavelength of 30 km. So, the higher the frequency of the vibrating charge, the shorter the wavelength of radiant energy.³

We tend to think of space as empty, but only because we cannot see the montages of electromagnetic waves that permeate every part of our surroundings. We see some of these waves, of course, as light. These waves constitute only a microportion of the electromagnetic spectrum. We are unconscious of radio and cellphone waves, which engulf us every moment. Free electrons in every piece of metal on Earth's surface continuously dance to the rhythms of these waves. They jiggle in unison with the electrons being driven up and down along their transmitting antennae. A radio or television receiver is simply a device that sorts and amplifies these tiny currents. There is radiation everywhere. Our first impression of the universe is one of matter and void, but actually the universe is a dense sea of radiation occupied only occasionally by specks of matter.

CHECK POINT

Are we correct to say that a radio wave is a low-frequency light wave? And that a radio wave is also a sound wave?

CHECK YOUR ANSWERS

Yes and no. Both a radio wave and a light wave are electromagnetic waves emitted by vibrating electrons; radio waves have lower frequencies than light waves, so a radio wave may be considered to be a low-frequency light wave (and a light wave, similarly, may be considered to be a high-frequency radio wave). But a sound wave is a mechanical vibration of matter and is fundamentally different from an electromagnetic wave. So a radio wave is definitely not a sound wave.

FRACTAL ANTENNAS

SCREENCAST: Speed of Light

For quality reception of electromagnetic waves, a conventional antenna has to be about one-quarter wavelength long. That's why, in early mobile devices, antennas had to be pulled out before the device was used. Nathan Cohen, a professor at Boston University, was troubled by a rule in Boston at the time that prohibited the use of large external antennas on buildings. So he fashioned a small antenna by folding aluminum foil into a compact fractal shape (a Van Koch figure—check *fractals* on the Internet). It worked. He then engineered and patented many practical fractal antennas, as did Carles Puente, an inventor in Spain. Both formed fractal-antenna companies.

Fractals are fascinating shapes that can be split into parts, each of which is (or approximates) a reduced copy of the whole. In any fractal, similar shapes appear at all levels of magnification. Common fractals in nature include snowflakes, clouds, lightning bolts, shorelines, and even cauliflower and broccoli.

The fractal antenna, like other fractals, has a shape that repeats itself. Because of its folded self-similar design, a fractal antenna can be compressed and fit into the body of the device—it can also simultaneously operate at different frequencies. Hence the same antenna can be used for mobile-phone conversations and for GPS navigation.

How nice that these devices fit in your pocket. Cheers for compact fractal antennas!

³The relationship is $c = f\lambda$, where c is the wave speed (constant), f is the frequency, and λ is the wavelength.

Outstanding Content Accompanied by Unparalleled Tutoring

The Mastering system provides tutorials and coaching activities covering content relevant to the conceptual physics course and motivates students to learn outside of class and arrive prepared for lecture.

Survey data show that the immediate feedback and tutorial assistance in MasteringPhysics motivate students to do more homework. The result is that students learn more and improve their test scores.

Assignable, in-depth tutorials guide students through the toughest topics with individualized coaching. These self-paced tutorials coach students with hints and feedback specific to individual misconceptions. Tutorials respond to a wide variety of typical wrong answers that students might enter at any step.

Coaching Activities have students interact with content, and available hints and/or feedback promote comprehension of the concepts.

MasteringPhysics[®]

Student Results reporting allow is centions of a student state of the state of the

MasteringPhysics is the leading online homework, tutorial, and assessment product designed to improve results by helping students quickly master concepts. Students benefit from selfpaced tutorials featuring specific wrong-answer feedback, hints, and a huge variety of educationally effective content to keep them engaged and on track. Robust diagnostics and unrivaled gradebook reporting allow instructors to pinpoint the weaknesses and misconceptions of a student or class to provide timely intervention.

- NEW! Learning CatalyticsTM is a "bring your own device" student engagement, assessment, and classroom intelligence system. With Learning Catalytics you can:
 - Assess students in real time, using open-ended tasks to probe student understanding.
 - Understand immediately where students are and adjust your lecture accordingly.
 - Improve your students' critical-thinking skills.
 - Access rich analytics to understand student performance.
 - Add your own questions to make Learning Catalytics fit your course exactly.
 - Manage student interactions with intelligent grouping and timing.

Learning Outcomes

 A learning objective has been added to help the students focus on the most important concepts in each chapter.
 These learning outcomes are associated with content in MasteringPhysics[®], allowing the work of tracking student performance against course learning outcomes to be done automatically.

ast	eringPhysics*				
Phy	vsics 101 (Petersoner)				
Date	na hone Assignment Roder	Textstool Texts Library	C INCOM	utor Resources	when Station
ea	rning Outcomes Summar	v			
	LENGTH OFFICE		a de riteres	N COMPLETE	I Rad
	utweet and the second states of the second states of the second s	ninadow of scientific incarry	eter mass	% 03894.018	S.MARVER BOOK
#+ 1 2	sawkeerourcower P Devendeds en underskerden, of de s P Demonstrate the addry is their critical	ninciples of acondition requiry In and company colocal biological	a car imana B 4	% case4.imi 100 50	UNARVER CORE.
1 - 1 2 3	LEMANNEL CURCOMEN The Demonstrate an understanding of the 2 Demonstrate the address of the critical Demonstrate the address of the critical	ntragilies of according regary y and employ collect initializing scills.	s de mais B 4 S	% COMPLIAN 100 50 MB	17 Ruo N.Anarota acces. 910 22.5
1 2 3	LEMANNEL CONCOMENT IT Demonstrate an understanding of the Demonstrate the apply to their critical It Demonstrate the apply to their critical accompany on the	etectples of accerding regary ty and surgery cellscal banking skills.	a dar itsset B 4 B	N COMPLETE 100 50 jai N/CMP170	LINENCE SCORE LINENCE SCORE PLO PLO PLO PLO PLO PLO PLO PLO
1 2 3	SAMPRIE CATCORES TO Demonstrate or understanding of the s Demonstrate the analysis of their crisical Demonstrate and interpret propers and cate assummers New 1 Data	a track the of sour ATA: regions is and company collected translang width. Times decising: Tomotoprime to Dispote an	etter Hand B 4 B	5 COMPLETE 100 50 50 50 50 50 50 50 50 50 50	17.8 Automatics access 17.0 A
1 2 3	LANNERSE CUPCOBER IF Democrate an understanding of the s IF Democrates the address of their critical IF Band and integrate propers and cases assessments Network 2 Data Head 3 Data	articulation of accord file, requiry by and employ collected biochemy solids. remain docted as the collected on the Complex and docted as the collected on the Complex and docted as the collected on the Complex and	e der interet B 4 B Chala (Ver all Packs	5 COMPLITE 100 50 60 60 60 700 100	LANNAULE ROOM
8 + 1 2 3	CLAMPRIE CLAPCORE (I) Demonstrate on understanding of the (II) Demonstrate the understanding of the constraints of the understanding of the constraints of the constrain	ntroughes of according regions or and employ control training skills. It must declarate benediations for Chapter and declarate benediations for Chapter and declarate Declarations of the Automation declarate Declarations of the Automation	e der itterer B 4 s cl'Date t Ver all Turks rot Transe m Date	% counting 100 50 88 % counting 100 100 0.0	17.0000028.00000 17.0000028.00000 17.000000 17.000000 17.000000 17.000000 17.000000 17.00000000 17.00000000 17.000000000000000000000000000000000000
8 + 1 2 3	 LEARBART CLIPED BLE Demonstrate an understanding of the relation of the part of the chiral Ble Blevel and interpart papers and data a submer in the second sec	encaption of scient Affle, impairs in work employs contract transmissions for the science of the science of the science doctoring. The majoritum of the science doctoring. The science of the science of the doctoring. Disconting and the science of the doctoring. Disconting and the science of the	e der manne B 4 5 childe child	% counting 100 50 88 80 900 900 900 900 900 900 900 900	SAMPLE ROOM

Gradebook Diagnostics

The Gradebook Diagnostics screen allows you to quickly and easily identify vulnerable students, difficult problems,

and your students' most common misconceptions.

MasteringPhysics[®]

CONCEPTUAL DUCULAR STREAM STR

written and illustrated by **Paul G. Hewitt** City College of San Francisco

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Publisher: Jim Smith	Senior Editor, Acquisitions, Global Edition: Priyanka Ahuja
Project Manager: Chandrika Madhavan	Design Manager: Derek Bacchus
Assistant Editor: Kyle Doctor	Text Design: Tamara Newnam
Marketing Manager: Will Smith	Cover Designer: Lumina Datamatics, Ltd.
Program Manager: Mary O'Connell	Illustrations: Rolin Graphics, Inc.
Senior Content Producer: Kate Brayton	Photo Researcher: Stephen Merland, PreMediaGlobal
Production Service and Composition: Cenveo®	Image Lead: Maya Melenchuk
Publisher Services	Manufacturing Buyer: Trudy Kimber
Project Manager, Production Service: Cindy Johnson	Printer and Binder: Courier/Kendallville
Copyeditor: Carol Reitz	Cover Printer: Courier/Kendallville
Head of Learning Asset Acquisition, Global Edition:	Cover Photo Credit: rudall30/Shutterstock
Laura Dent	Project Editor, Global Edition: Aaditya Bugga

Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in this textbook appear on page **801**.

Pearson Education Limited

Edinburgh Gate Harlow Essex CM20 2JE England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited, 2015

The rights of Paul G. Hewitt to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Conceptual Physics, 12th edition, ISBN 978-0-321-90910-7, by Paul G. Hewitt, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-05713-0 ISBN 13: 978-1-292-05713-2

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

 $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

Typeset in 10/12 AGaramondPro-Regular by Cenveo® Publisher Services.

Printed and bound by Courier Kendallville in the United States of America.

To my grandchildren, Manuel, Alexander, Megan, Grace, and Emily and to all students who struggle to learn physics

Contents in Brief

	To the Student	20
	To the Instructor	21
1	About Science	28
par Me	т оме chanics	45
2	Newton's First Law of Motion–Inertia	46
3	Linear Motion	65
4	Newton's Second Law of Motion	83
5	Newton's Third Law of Motion	100
6	Momentum	116
7	Energy	135
8	Rotational Motion	158
9	Gravity	186
10	Projectile and Satellite Motion	208
par Pro	r two perties of Matter	233
11	The Atomic Nature of Matter	234
12	Solids	252
13	Liquids	270
14	Gases	290
par He	T THREE at	309
15	Temperature Heat and Expansion	310
16	Heat Transfer	328
17	Change of Phase	346
18	Thermodynamics	362
PΔR	TEOUR	
Sou	ind	381
19	Vibrations and Waves	382
20	Sound	400
21	Musical Sounds	417

PART FIVE Electricity and Magnetism	431
22 Electrostatics	432
23 Electric Current	456
24 Magnetism	478
25 Electromagnetic Induction	495
	~ 11
Light	511
26 Properties of Light	512
27 Color	530
28 Reflection and Refraction	545
29 Light Waves	570
30 Light Emission	588
31 Light Quanta	608
PART SEVEN Atomic and Nuclear Physics	627
32 The Atom and the Quantum	628
33 The Atomic Nucleus and Radioactivity	641
34 Nuclear Fission and Fusion	663
part eight Relativity	683
35 Special Theory of Relativity	684
36 General Theory of Relativity	712
APPENDIX A On Measurement	
and Unit Conversions	729
APPENDIX B More About Motion	735
APPENDIX C Graphing	739
APPENDIX D Vector Applications	742
APPENDIX E Exponential Growth	
and Doubling Time	745
ODD-NUMBERED ANSWERS	749
GLOSSARY	783
CREDITS	801
INDEX	805

Contents in Detail

	Con	ceptual Physics Photo Album	18
	To the Student		
	To the Instructor		
	Ack	nowledgments	25
1	Ab	out Science	28
	1.1	Scientific Measurements	29
		How Eratosthenes Measured the Size of Earth	29
		Size of the Moon	30
		Distance to the Moon	31
		Distance to the Sun	32
		Size of the Sun	33
		Mathematics—The Language of Science	34
	1.2	Scientific Methods	34
		The Scientific Attitude	34
	1.3	Science, Art, and Religion	38
		PSEUDOSCIENCE	39
	1.4	Science and Technology	40
		RISK ASSESSMENT	40
	1.5	Physics—The Basic Science	41
	1.6	In Perspective	42

PART ONE Mechanics

2 Newton's First Law of Motion–Inertia

of Motion–Inertia		46
2.1	Aristotle on Motion	47
	Copernicus and the Moving Earth	48
	ARISTOTLE (384–322 вс)	49
2.2	Galileo's Experiments	49
	Leaning Tower	49
	Inclined Planes	49
	GALILEO GALILEI (1564–1642)	50
2.3	Newton's First Law of Motion	52
	PERSONAL ESSAY	53
2.4	Net Force and Vectors	54
	Force Vectors	55

	2.5	The Equilibrium Rule	56
		PRACTICING PHYSICS	57
	2.6	Support Force	58
	2.7	Equilibrium of Moving Things	58
	2.8	The Moving Earth	59
3	Lir	near Motion	65
	3.1	Motion Is Relative	66
	3.2	Speed	67
		Instantaneous Speed	67
		Average Speed	67
	3.3	Velocity	68
		Constant Velocity	69
		Changing Velocity	69
	3.4	Acceleration	69
		Acceleration on Galileo's Inclined Planes	71
	3.5	Free Fall	72
		How Fast	72
		How Far	74
		HANG TIME	76
		How Quickly "How Fast" Changes	76
	3.6	Velocity Vectors	77
4	Ne	ewton's Second Law	
	of	Motion	83
	4.1	Force Causes Acceleration	84
	4.2	Friction	85
	4.3	Mass and Weight	87
		Mass Resists Acceleration	89
	4.4	Newton's Second Law of Motion	89
	4.5	When Acceleration Is <i>g</i> —Free Fall	90
	4.6	When Acceleration Is Less Than	01
_		g—inomitee Fair	91
5	Ne	ewton's Third Law	
	of	Motion	100
	5.1	Forces and Interactions	101
	5.2	Newton's Third Law of Motion	102
		Defining Your System	103

	5.3	Action and Reaction on Different	
		Masses	105
		PRACTICING PHYSICS: TUG-OF-WAR	107
	5.4	Vectors and the Third Law	108
	5.5	Summary of Newton's Three Laws	111
6	Mo	mentum	116
	6.1	Momentum	117
	6.2	Impulse	118
	6.3	Impulse Changes Momentum	119
		Case 1: Increasing Momentum	119
		Case 2: Decreasing Momentum Over	
		a Long Time	120
		Case 3: Decreasing Momentum Over	100
		a Short Time	120
	6.4	Bouncing	122
	6.5	Conservation of Momentum	123
		CONSERVATION LAWS	124
	6.6	Collisions	125
	6.7	More Complicated Collisions	128
7	Ene	ergy	135
	7.1	Work	136
		Power	138
		Mechanical Energy	139
	7.2	Potential Energy	139
	7.3	Kinetic Energy	140
	7.4	Work–Energy Theorem	141
	7.5	Conservation of Energy	143
		ENERGY AND TECHNOLOGY	144
		CIRCUS PHYSICS	145
		Recycled Energy	145
	7.6	Machines	146
	7.7	Efficiency	147
	7.8	Sources of Energy	149
		JUNK SCIENCE	151
8	Rot	tational Motion	158
	8.1	Circular Motion	159
		WHEELS ON RAILROAD TRAINS	161
	8.2	Rotational Inertia	162
	8.3	Torque	165
	8.4	Center of Mass and Center of Gravity	166
		Locating the Center of Gravity	168
		Stability	169

	8.5	Centripetal Force	171
		PRACTICING PHYSICS:	
		WATER-BUCKET SWING	172
	8.6	Centrifugal Force	173
		Centrifugal Force in a Rotating	
		Reference Frame	173
		Simulated Gravity	174
	8.7	Angular Momentum	176
	8.8	Conservation of Angular Momentum	177
9	Gra	avity	186
	9.1	The Universal Law of Gravity	187
	9.2	The Universal Gravitational	
		Constant, G	189
	9.3	Gravity and Distance:	
		The Inverse-Square Law	190
	9.4	Weight and Weightlessness	192
	9.5	Ocean Tides	193
		Tides in the Earth and Atmosphere	196
		Tidal Bulges on the Moon	196
	9.6	Gravitational Fields	196
		Gravitational Field Inside a Planet	197
		Einstein's Theory of Gravitation	199
	9.7	Black Holes	200
	9.8	Universal Gravitation	201
10	Pro	jectile and	
	Sat	ellite Motion	208
	10.1	Projectile Motion	209
		Projectiles Launched Horizontally	210
		Projectiles Launched at an Angle	212
		PRACTICING PHYSICS: HANDS-ON	
		DANGLING BEADS	213
		HANG TIME REVISITED	216
	10.2	Fast-Moving Projectiles—Satellites	216
	10.3	Circular Satellite Orbits	218
	10.4	Elliptical Orbits	220

WORLD MONITORING

FINDING YOUR WAY

10.5 Kepler's Laws of Planetary Motion

221

222

223

223

224

BY SATELLITE

10.6 Energy Conservation and Satellite Motion

10.7 Escape Speed

PART TWO

Properties of Matter 233

The Atomic Nature of Matter 234

11.1	The Atomic Hypothesis	235
	FALLING ALICE	236
11.2	Characteristics of Atoms	236
11.3	Atomic Imagery	238
11.4	Atomic Structure	239
	The Elements	240
11.5	The Periodic Table of the Elements	241
	Relative Sizes of Atoms	241
11.6	Isotopes	244
11.7	Compounds and Mixtures	245
11.8	Molecules	246
11.9	Antimatter	247
	Dark Matter	248

Solids

12.1	Crystal Structure	253
	CRYSTAL POWER	255
12.2	Density	255
12.3	Elasticity	256
12.4	Tension and Compression	258
	PRACTICING PHYSICS:	
	STICK STRENGTH	259
12.5	Arches	260
	ADDITIVE MANUFACTURING	
	OR 3-D PRINTING	261
12.6	Scaling	262

Liquids

Pressure	271
Pressure in a Liquid	272
Buoyancy	275
Archimedes' Principle	276
What Makes an Object Sink or Float?	277
Flotation	279
FLOATING MOUNTAINS	280
Pascal's Principle	281
Surface Tension	283
Capillarity	284
	Pressure Pressure in a Liquid Buoyancy Archimedes' Principle What Makes an Object Sink or Float? Flotation FLOATING MOUNTAINS Pascal's Principle Surface Tension Capillarity

14 Ga	290	
14.1	The Atmosphere	291
14.2	Atmospheric Pressure	292
	The Barometer	294
14.3	Boyle's Law	296
14.4	Buoyancy of Air	297
14.5	Bernoulli's Principle	298
	Applications of Bernoulli's Principle	300
	PRACTICING PHYSICS	301
14.6	Plasma	302
	Plasma in the Everyday World	302
	Plasma Power	303
PART T	HREE	

Heat

15 Temperature, Heat, and Expansion 15.1 Temperature **15.2** Heat Measuring Heat **15.3** Specific Heat Capacity **15.4** The High Specific Heat Capacity of Water **15.5** Thermal Expansion Expansion of Water LIFE AT THE EXTREMES Heat Transfer **16.1** Conduction 16.2 Convection PRACTICING PHYSICS 16.3 Radiation Emission of Radiant Energy Absorption of Radiant Energy Reflection of Radiant Energy Cooling at Night by Radiation 16.4 Newton's Law of Cooling **16.5** The Greenhouse Effect **16.6** Climate Change **16.7** Solar Power PRACTICING PHYSICS

16.8 Controlling Heat Transfer 341

17	Ch	ange of Phase	346
	17.1	Phases of Matter	347
	17.2	Evaporation	347
	17.3	Condensation	349
		Condensation in the Atmosphere	350
		Fog and Clouds	351
	17.4	Boiling	351
		Geysers	352
		Boiling Is a Cooling Process	352
		Boiling and Freezing at the Same Time	353
	17.5	Melting and Freezing	353
		Regelation	354
	17.6	Energy and Changes of Phase	354
		PRACTICING PHYSICS	358
18	The	ermodynamics	362
	18.1	Thermodynamics	363
	18.2	Absolute Zero	363
		Internal Energy	365
	18.3	First Law of Thermodynamics	365
	18.4	Adiabatic Processes	367
	18.5	Meteorology and the First Law	367

	87	
18.6	Second Law of Thermodynamics	370
	Heat Engines	370
	THERMODYNAMICS DRAMATIZED!	372
18.7	Energy Tends to Disperse	373
18.8	Entropy	375
PART F	OUR	

Sound

19	Vib	orations and Waves	382
	19.1	Good Vibrations	383
		Vibration of a Pendulum	384
	19.2	Wave Description	384
	19.3	Wave Motion	386
		PRACTICING PHYSICS	387
		Transverse Waves	387
		Longitudinal Waves	387
	19.4	Wave Speed	388
	19.5	Wave Interference	389
		Standing Waves	390
	19.6	Doppler Effect	391
	19.7	Bow Waves	393
	19.8	Shock Waves	393

20	Sou	ınd
	20.1	Nature of Sound
		Origin of Sound
		Media That Transmit Sound
	20.2	Sound in Air
		LOUDSPEAKER
		Speed of Sound in Air
		PRACTICING PHYSICS
		Energy in Sound Wayes

	Energy in Sound Waves	405
20.3	Reflection of Sound	405
20.4	Refraction of Sound	406
20.5	Forced Vibrations	408
	Natural Frequency	408
20.6	Resonance	408
20.7	Interference	410
20.8	Beats	411
	RADIO BROADCASTS	412

Musical Sounds

21.1	Noise and Music	418
21.2	Pitch	419
21.3	Sound Intensity and Loudness	420
21.4	Quality	421
21.5	Musical Instruments	422
21.6	Fourier Analysis	423
21.7	From Analog to Digital	425

PART FIVE

Electricity and Magnetism 431

22 Ele	ectrostatics	432
22.1	Electricity	433
	Electrical Forces	434
22.2	Electric Charges	434
22.3	Conservation of Charge	435
	ELECTRONICS TECHNOLOGY	
	AND SPARKS	436
22.4	Coulomb's Law	437
22.5	Conductors and Insulators	438
	Semiconductors	438
	Superconductors	439
22.6	Charging	439
	Charging by Friction and Contact	439
	Charging by Induction	440

22.7	Charge Polarization	442
22.8	Electric Field	443
	MICROWAVE OVEN	444
	Electric Shielding	445
22.9	Electric Potential	447
	Electric Energy Storage	449
	Van de Graaff Generator	450

Electric Current

23.1	Flow of Charge and Electric Current	457
23.2	Voltage Sources	458
23.3	Electrical Resistance	459
23.4	Ohm's Law	460
	Ohm's Law and Electric Shock	461
23.5	Direct Current and Alternating Current	463
	Converting AC to DC	463
23.6	Speed and Source of Electrons	
	in a Circuit	464
23.7	Electric Power	466
23.8	Lamps	467
23.9	Electric Circuits	467
	Series Circuits	468
	FUEL CELLS	468
	Parallel Circuits	469
	Parallel Circuits and Overloading	471
	Safety Fuses	471

24 Magnetism

24.1	Magnetism	479
24.2	Magnetic Poles	480
24.3	Magnetic Fields	481
24.4	Magnetic Domains	482
24.5	Electric Currents and Magnetic Fields	484
	PRACTICING PHYSICS	484
24.6	Electromagnets	485
	Superconducting Electromagnets	485
24.7	Magnetic Forces	486
	On Moving Charged Particles	486
	On Current-Carrying Wires	486
	Electric Meters	487
	Electric Motors	488
24.8	Earth's Magnetic Field	488
	Cosmic Rays	490
24.9	Biomagnetism	491
	MRI: MAGNETIC RESONANCE	
	IMAGING	491

CONTENTS 4 -

		CONTENTS	15
25	Ele	ctromagnetic Induction	495
	25.1	Electromagnetic Induction	496
	25.2	Faraday's Law	498
	25.3	Generators and Alternating Current	499
	25.4	Power Production	500
		Turbogenerator Power	500
		MHD Power	501
	25.5	Transformers	501
	25.6	Self-Induction	504
	25.7	Power Transmission	505
	25.8	Field Induction	505
PAF	RT S	IX	
Lię	ght		511
26	Pro	perties of Light	512
	26.1	Electromagnetic Waves	514
	26.2	Electromagnetic Wave Velocity	514
	26.3	The Electromagnetic Spectrum	515
		FRACTAL ANTENNAS	516
	26.4	Transparent Materials	517
	26.5	Opaque Materials	519
	20.0	Shadows	520
	26.6	Seeing Light—The Eye	522
27	Co	lor	530
	27 1	Color in Our World	531
	27.2	Selective Reflection	531
	27.3	Selective Transmission	533
	27.4	Mixing Colored Lights	533
	21.4	Primary Colors	534
		Complementary Colors	535
	27 5	Mixing Colored Pigments	535
	27.5	Why the Slav Is Blue	537
	27.0	Why Supsets Are Red	538
	21.1		530
	27.8	Why Clouds Are White	540
	27.9	Why Water Is Greenish Blue	540
28	Ref	lection and Refraction	545
	28.1	Reflection	546
		Principle of Least Time	546
	28.2	Law of Reflection	547

Plane Mirrors Diffuse Reflection

	28.3	Refraction	550
		Index of Refraction	552
		Mirage	552
	28.4	Cause of Refraction	553
	28.5	Dispersion and Rainbows	555
	28.6	Total Internal Reflection	557
	28.7	Lenses	559
		Image Formation by a Lens	560
		PRACTICING PHYSICS	561
	28.8	Lens Defects	563
29	Lig	ht Waves	570
29	Lig 29.1	ht Waves Huygens' Principle	570 571
29	Lig 29.1 29.2	ht Waves Huygens' Principle Diffraction	570 571 573
29	Lig 29.1 29.2 29.3	ht Waves Huygens' Principle Diffraction Superposition and Interference	570 571 573 575
29	Lig 29.1 29.2 29.3 29.4	ht Waves Huygens' Principle Diffraction Superposition and Interference Thin-Film Interference	570 571 573 575 578
29	Lig 29.1 29.2 29.3 29.4	ht Waves Huygens' Principle Diffraction Superposition and Interference Thin-Film Interference Single-Color Thin-Film Interference	570 571 573 575 578 578 578
29	Lig 29.1 29.2 29.3 29.4	ht Waves Huygens' Principle Diffraction Superposition and Interference Thin-Film Interference Single-Color Thin-Film Interference Interference Colors	570 571 573 575 578 578 578 578
29	Lig 29.1 29.2 29.3 29.4	ht Waves Huygens' Principle Diffraction Superposition and Interference Thin-Film Interference Single-Color Thin-Film Interference Interference Colors PRACTICING PHYSICS	570 571 573 575 578 578 578 579 580

		Three-Dimensional Viewing	583
	29.6	Holography	585
30	Lig	ht Emission	588

30.1	Light Emission	589
30.2	Excitation	590
30.3	Emission Spectra	592
30.4	Incandescence	593
30.5	Absorption Spectra	595
30.6	Fluorescence	596
30.7	Phosphorescence	597
30.8	Lamps	598
	Incandescent Lamp	598
	Fluorescent Lamp	598
	Compact Fluorescent Lamp	599
	Light-Emitting Diode	599
30.9	Lasers	600

Light Quanta

31.1	Birth of the Quantum Theory	609
31.2	Quantization and Planck's Constant	610
31.3	Photoelectric Effect	611
31.4	Wave–Particle Duality	614
31.5	Double-Slit Experiment	614
31.6	Particles as Waves: Electron	
	Diffraction	616

31.7 Uncertainty Principle	618
31.8 Complementarity	621
PREDICTABILITY AN	ID CHAOS 622

PART SEVEN

Atomic and Nuclear Physics 627

The Atom and the Quantum 628

32.1	Discovery of the Atomic Nucleus	629
32.2	Discovery of the Electron	630
32.3	Atomic Spectra: Clues to	
	Atomic Structure	632
32.4	Bohr Model of the Atom	633
32.5	Explanation of Quantized Energy	
	Levels: Electron Waves	634
32.6	Quantum Mechanics	636
32.7	Correspondence Principle	637
	HIGGS BOSON	638

The Atomic Nucleus and Radioactivity

33.1	X-rays and Radioactivity	642
33.2	Alpha, Beta, and Gamma Rays	643
33.3	Environmental Radiation	645
	Units of Radiation	645
	Doses of Radiation	646
	Radioactive Tracers	647
33.4	The Atomic Nucleus and	
	the Strong Force	648
33.5	Radioactive Half-Life	651
33.6	Radiation Detectors	652
33.7	Transmutation of Elements	654
	Natural Transmutation	654
	Artificial Transmutation	656
33.8	Radiometric Dating	656
	FOOD IRRADIATION	658

Nuclear Fission and Fusion 663

34.1	Nuclear Fission	665
34.2	Nuclear Fission Reactors	667
	PLUTONIUM	669
34.3	The Breeder Reactor	670
34.4	Fission Power	670
34.5	Mass–Energy Equivalence	671
	PHYSICS AT AIRPORT SECURITY	675

34.6 Nuclear Fusion	675
34.7 Controlling Fusion	678
ART EIGHT	

PART EIGHTRelativity683

35 Spa	ecial Theory of Relativity	684
35.1	Motion Is Relative	685
	Michelson–Morley Experiment	686
35.2	Postulates of the Special	
	Theory of Relativity	687
35.3	Simultaneity	688
35.4	Spacetime and Time Dilation	689
	CLOCKWATCHING ON A	
	TROLLEY CAR RIDE	693
	The Twin Trip	694
35.5	Addition of Velocities	699
	Space Travel	700
	CENTURY HOPPING	701
35.6	Length Contraction	701
35.7	Relativistic Momentum	703
35.8	Mass, Energy, and $E = mc^2$	704
35.9	The Correspondence Principle	706
36 Ge	neral Theory of Relativity	712
36.1	Principle of Equivalence	713
36.2	Bending of Light by Gravity	715
36.3	Gravity and Time: Gravitational	
	Red Shift	717

CONTENTS 17	CONTENTS	17
-------------	----------	----

36.4	Gravity and Space: Motion	700
	of Mercury	/20
36.5	Gravity, Space, and	720
	a New Geometry	/20
36.6	Gravitational Waves	/22
36.7	Newtonian and Einsteinian	700
	Gravitation	/23
Epilogue		727
APPEND	IX A	
On Meas	urement and	
Unit Con	versions	729
APPEND	IX B	
More Abo	out Motion	735
Graphing		730
Graphing		/ 5 /
APPEND	ХР	
Vector A	oplications	742
1	1	·
APPEND	IX E	
Exponent	ial Growth	
and Doul	oling Time	745
Odd	Numbered Answers	7/0
Ouu	Numbered Answers	/1/
Glos	sary	783
Cred	its	801
Inde	×	805
mue	n	00)

The Conceptual Physics Photo Album

onceptual Physics is a very personal book, reflected in its many photographs of family and friends, who overlap with colleagues and friends worldwide. Many of these people are identified in chapter-opening photos, and with some exceptions I'll not repeat their names here. Family and friends whose photos are Part Openers, however, are listed here. We begin on page 26, where great-nephew Evan Suchocki (pronounced "su-hock-ee" with a silent c) holds a pet chickie on my lap.

Part One opens on page 45 with Charlotte Ackerman, the daughter of friends Duane Ackerman and Ellen Hum. Part Two opens with Andrea Wu (also on pages 157 and 518), daughter of my friend in Hawaii, Chiu Man Wu (page 348). Part Three opens on page 270 with four-year-old Francesco Ming Giovannuzzi from Florence, Italy, grandson of friends Keith and Tsing Bardin (page 271). Part Four on page 381 shows Abby Dijamco, daughter of my last CCSF teaching assistant, dentist Stella Dijamco. In Part Five, on page 431, is my granddaughter Megan, daughter of Leslie and Bob Abrams. Part Six, page 511, opens with Lillian's nephew, Christopher Lee. Part Seven, page 478, shows William Davis, son of friends Alan and Fe Davis. My granddaughter Grace Hewitt begins Part Eight on page 683.

City College of San Francisco friends and colleagues open several chapters and are named there. Photos that are figures include Will Maynez, the designer and builder of the air track displayed on page 126, and again burning a peanut on page 324. Diana Lininger Markham is shown on pages 55 and 185. Fred Cauthen drops balls on page 153.

Physics instructor friends from other colleges and universities include Evan Jones playing with Bernoulli on page 290 and showing LED lighting on page 599. Egypt's Mona El Tawil-Nassar adjusts capacitor plates on page 449. Sanjay Rebello from Kansas State University, Manhattan, is shown on page 164. Hawaii's Walter Steiger is on page 653. Chuck Stone of Colorado School of Mines, Golden, shows an energy ramp on page 211.

Physics high school teacher friends include retired Marshall Ellenstein, who swings the water-filled bucket on page 172, walks barefoot on broken glass on page 289, and poses with Richard Feynman on page 570. Other physics teachers from Illinois are Ann Brandon, riding on a cushion of air on page 294, and Tom Senior, making music on page 429.

Family photos begin with wife Lillian and me, showing that you cannot touch without being touched on page 107. Another updated photo that links touching to Newton's third law shows my brother Stephen with his daughter Gretchen on page 113. Stephen's son Travis is on page 180, and his oldest daughter Stephanie on pages 256, 569, and 715. My son Paul is shown on pages 331 and 366.

Daughter-in-law Ludmila Hewitt holds crossed Polaroids on page 582. The endearing girl on page 241 is my daughter Leslie Abrams, earth-science coauthor of the Conceptual Physical Science textbooks. This colorized photo of Leslie has been a trademark of Conceptual Physics since the Third Edition. A more recent photo with her husband Bob is on page 512. Their children, Megan and Emily (page 580), along with son Paul's children, Alex (page 116) and Grace (page 417), make up the colorful set of photos on page 536. Photos of my late son James are on pages 176, 420, and 562. He left me my first grandson, Manuel, seen on pages 260 and 409. Manuel's grandmom, my wife Millie, who passed away in 2004, bravely holds her hand above the active pressure cooker on page 332. Brother David and his wife Barbara demonstrate atmospheric pressure on page 295. Their son, also David, an electrician, is on page 471, and grandson John Perry Hewitt is on page 302. Sister Marjorie Hewitt Suchocki, author and emeritus theologian at Claremont School of Theology, illustrates reflection on page 548. Marjorie's son, John Suchocki, author of Conceptual Chemistry, Fifth Edition, and chemistry coauthor of the Conceptual Physical Science textbooks, is also a singer-songwriter, known as John Andrew; he strums his guitar on page 498. The group listening to music on page 425 is part of John's and Tracy's wedding party: from left to right, late Butch Orr, niece Cathy Candler (page 162 and her son Garth Orr on page 252), bride and groom, niece Joan Lucas (page 65), sister Marjorie, Tracy's parents Sharon and David Hopwood, teachers Kellie Dippel and Mark Werkmeister, and me.

Photos of Lillian's family include her dad (my father-in-law), Wai Tsan Lee, showing magnetic induction on page 483, and her mom (my mother-in-law), Siu Bik Lee, making good use of solar power on page 341. My nephew and niece, Erik and Allison Wong, dramatically illustrate thermodynamics on page 372.

Personal friends who were my former students begin with Tenny Lim, a rocket engineer at the Jet Propulsion Lab in Pasadena, drawing her bow on page 141. This photo has appeared in every book since the Sixth Edition. She is seen with her husband Mark Clark on Segways on page 170. Another of my protégés is rocketscientist Helen Yan, who is involved in satellite imaging sensoring for Lockheed Martin in Sunnyvale, in addition to teaching physics part-time at CCSF (page 147), and again posing with Richard Feynman and Marshall Ellenstein on page 570. On page 176 Cliff Braun is at the far left of my son James in Figure 8.50, with nephew Robert Baruffaldi at the far right. Alexei Cogan demonstrates the center of gravity on page 169, and the karate gal on page 121 is Cassy Cosme.

Three dear friends from school days are Howard Brand on page 116, Dan Johnson on page 362, and his wife Sue on page 65 (the first rower in the racing shell). Dan and Sue Johnson's grandson Bay plays the piano on page 422. Other cherished friends are Ryan Patterson, resonating on page 409, and Paul Ryan, who drags his finger through molten lead on page 357. My science influence from the sign-painting days is Burl Grey, shown on page 56 (with a sample sign-painting discussion on page 52), and Jacques Fresco is on page 159. Dear friend Dennis McNelis is eating pizza on page 335. Larry and Tammy Tunison wear radiation badges on page 647 (Tammy's dogs are on page 346). Greta Novak floats on very dense water on page 515. Duane Ackerman's daughter Emily looks through novel lenses on page 563. Peter Rea of Arbor Scientific is on page 213. Paul Stokstad of PASCO is shown on page 158, and David and Christine Vernier of Vernier Software are on page 135.

The inclusion of these people who are so dear to me makes *Conceptual Physics* all the more my labor of love.

To the Student

You know you can't enjoy a game unless you know its rules; whether it's a ball game, a computer game, or simply a party game. Likewise, you can't fully appreciate your surroundings until you understand the rules of nature. Physics is the study of these rules, which show how everything in nature is beautifully connected. So the main reason to study physics is to enhance the way you see the physical world. You'll see the mathematical structure of physics in frequent equations, but more than being recipes for computation, you'll see the equations as **guides to thinking**.

PAUL G. H= witt

I enjoy physics, and you will too — because you'll understand it. So go for comprehension of concepts as you read this book, and if more computation is on your menu, check out *Problem Solving in Conceptual Physics*, the ancillary book by Phil Wolf and me. Your understanding of physics should soar. Enjoy your physics!

To the Instructor

he sequence of chapters in this Twelfth Edition is identical to that in the previous edition. New to this edition are expanded personality profiles at the beginning of every chapter, highlighting a scientist, teacher, or historical figure who complements the chapter material. Each chapter begins with a photo montage of educators, and sometimes their children, who bring life to the learning of physics.

As in the previous edition, Chapter 1, "About Science," begins your course on a high note with coverage of early measurements of the Earth and distances to the Moon and the Sun. It is hoped that the striking photos of wife Lillian surrounded by spots of light on the sidewalk beneath a tall tree will prompt one of my favorite projects that has students investigating the round spot cast by a small hole in a card held in sunlight—and then going further to show that simple measurements lead to finding the Sun's diameter. This project extends to the *Practice Book* and the *Lab Manual*.

Part One, "Mechanics," begins with Chapter 2, which, as in the previous edition, presents a brief historical overview of Aristotle and Galileo, progressing to Newton's first law and to mechanical equilibrium. Force vectors are introduced, primarily for forces that are parallel to one another. Vectors are extended to velocity in the following Chapter 3, and Chapter 5 treats both force and velocity vectors and their components.

Chapter 3, "Linear Motion," is the only chapter in Part One that is devoid of physics laws. Kinematics has no laws, only definitions, mainly for *speed*, *velocity*, and *acceleration*—likely the least exciting concepts that your course has to offer. Too often kinematics becomes a pedagogical "black hole" of instruction—too much time for too little physics. Being more math than physics, the kinematics equations can appear to the student as the most intimidating in the book. Although the experienced eye doesn't see them as such, this is how *students* first see them:

 $s = s_0 + \delta i$ $s = s_0 i + \frac{1}{2} \delta i^2$ $s^2 = s_0^2 + 2\delta s$ $s_a = \frac{1}{2}(s_0 + s)$

If you wish to reduce class size, display these equations on the first day and announce that class effort for much of the term will be on making sense of them. Don't we do much the same with the standard symbols?

Ask any college graduate two questions: What is the acceleration of an object in free fall? What keeps Earth's interior hot? You'll see what their education focused on because many more will correctly answer the first question than the second. Traditionally, physics courses have been top-heavy in kinematics with little or no coverage of modern physics. Radioactive decay almost never gets the attention given to falling bodies. So my recommendation is to pass quickly through Chapter 3, making the distinction between velocity and acceleration, and then to move on to

Chapter 4, "Newton's Second Law of Motion," where the concepts of velocity and acceleration find their application.

Chapter 5 continues with Newton's third law. More on vectors is found in Appendix D and especially in the *Practice Book*.

Chapter 6, "Momentum," is a logical extension of Newton's third law. One reason I prefer teaching it before teaching energy is that students find mv much simpler and easier to grasp than $\frac{1}{2}mv^2$. Another reason for treating momentum first is that the vectors of previous chapters are employed with momentum but not with energy.

Chapter 7, "Energy," is a longer chapter, rich with everyday examples and current energy concerns. Energy is central to mechanics, so this chapter has the greatest amount of chapter-end material (80 exercises). Work, energy, and power also get generous coverage in the *Practice Book*.

After Chapters 8 and 9 (on rotational mechanics and gravity), mechanics culminates with Chapter 10 (on projectile motion and satellite motion). Students are fascinated to learn that any projectile moving fast enough can become an Earth satellite. Moving even faster, it can become a satellite of the Sun. Projectile motion and satellite motion belong together.

Part Two, "Properties of Matter," features chapters on atoms, solids, liquids, and gases, which are much the same as the previous edition. New applications, some quite enchanting, enhance the flavor of these chapters.

Parts Three through Eight continue, like earlier parts, with enriched examples of current technology. New lighting with CFLs and LEDs in Chapter 23 has added treatment in Chapter 30. The chapters with the fewest changes are Chapters 35 and 36 on special and general relativity, respectively.

At the end of each of the eight parts is a **Practice Exam**, most featuring 30 multiple-choice questions. Answers appear at the end of the book as in the previous edition. Odd-numbered answers and solutions to *all* chapter-end material are given at the end of the book.

As in previous editions, some chapters include short boxed essays on such topics as energy and technology, railroad train wheels, magnetic strips on credit cards, and magnetically levitated trains. Also featured are boxes on pseudoscience, culminating with the public phobia about food irradiation and anything nuclear. To the person who works in the arena of science, who knows about the care, checking, and cross-checking that go into understanding something, pseudoscientific misconceptions are laughable. But to those who don't work in the science arena, including even your best students, pseudoscience can seem compelling when purveyors clothe their wares in the language of science while skillfully sidestepping the tenets of science. Our hope is to help stem this rising tide.

End-of-chapter material begins with a **Summary of Terms**. Following are **Reading Check Questions** that summarize the main points of the chapter. Students can find the answers to these questions, word for word, in the reading. The **Plug and Chug** exercises are for familiarity with equations. As introduced in previous editions, many good comments have come from the **Think and Rank** exercises. Critical thinking is required in comparing quantities in similar situations. Getting an answer is not enough; the answer must be compared with others and a ranking from most to least is asked for. I consider this the most worthwhile offering in the chapter-end material.

Think and Explain exercises are the nuts and bolts of conceptual physics. Many require critical thinking, while some are designed to connect concepts to familiar situations. Most chapters also have Think and Discuss sections (which are tailored for student discussion). More math-physics challenges are found in the sets of Think and Solve exercises. These problems are much less numerous than Think and Explains and Think and Ranks. Many more problems are available in the

student supplement, **Problem Solving in Conceptual Physics**, coauthored with Phil Wolf. While problem solving is not the main thrust of a conceptual course, Phil and I, like most physics instructors, nevertheless love solving problems. In a novel and student-friendly way, our supplement features problems that are more physics than math, nicely extending *Conceptual Physics*—even to student-friendly algebraic courses that feature problem solving. Problem solutions are included in the Instructor Resources area of MasteringPhysics.

The most important ancillary to this book is the **Practice Book**, which contains my most creative writings and drawings. These work pages guide students step by step toward understanding the central concepts. There are one or more practice pages for nearly every chapter in the book. They can be used inside or outside of class. In my teaching I passed out copies of selected pages as home tutors.

The **Laboratory Manual** coauthored with Dean Baird that accompanies this edition provides a great variety of activities and lab exercises. The polishing that Dean gives this material is extraordinary.

Next-Time Questions, familiar to readers of *The Physics Teacher* as *Figuring Physics*, are available electronically and are more numerous than ever before. When sharing these with your classes, please do not show the question(s) and the answer(s). Allow sufficient "wait time" between the question and the answer for your students to discuss the answer before showing it "next time" (which at a minimum should be the next class meeting, or even next week). Thus the title named appropriately "Next-Time Questions." More learning occurs when students ponder answers before being given them. Next-Time Questions are available online via the Instructor Resources section of MasteringPhysics and www.pearsonglobaleditions. com/hewitt.

The **Instructor Manual** for the textbook and *Laboratory Manual*, like previous ones, features demonstrations and suggested lectures for every chapter. It includes answers to all end-of-chapter material. If you're new to teaching this course, you'll likely find it enormously useful. It sums up "what works" in my more than 30 years of teaching.

The **Instructor Resources** are a wealth of presentation tools to help support your instruction. In a word, they are *sensational!* They include "everything you could ask for as a teaching resource," including lecture outlines for each chapter in PowerPoint and chapter-by-chapter weekly in-class quizzes in PowerPoint. The **Instructor Resources** also provide all the art and photos from the book (in highresolution jpeg format), the Test Bank, Next-Time Questions, and the Instructor Manual in editable Word format.

Last but not least is MasteringPhysics. . . .

Innovative, targeted, and effective online learning media is easily integrated into your course using MasteringPhysics to assign tutorials, quizzes, and other activities as out-of-class homework or projects that are automatically graded and recorded. Simple icons throughout the text highlight key tutorials, interactive figures, and other online resources available in the Mastering study area. The instructor resources are also available for download. A chapter section guide in the study area summarizes the media available to you and your students, chapter by chapter.

For more information on the support ancillaries, see http://www.pearsonglobaleditions.com/hewitt or contact your Pearson representative.

MasteringPhysics[®]

SCREENCAST: Conservation of Momentum

New Features in This Edition

The greatest addition to this edition are the 147 **Hewitt-Drew-It screencasts** that have been featured on YouTube since 2012. QR codes throughout the book link the student to these tutorial lessons that have been created by me and embellished by my wife. We feel that these lessons are our most recent and important contribution to making physics correct and understandable. They nicely complement the chapter material of this edition. Simply scan the QR codes in the book with your smartphone or electronic device and a QR code reader app. After scanning the code, you will be able to view the Hewitt-Drew-It screencasts online. (Note: Data usage charges may apply.)

The profiles of physicists and physics educators in the previous edition are still included, with new people added throughout. By learning more about the people behind the chapter content, the reader gets a more personalized flavor of physics.

More on force and velocity vectors and climate change is in this edition. New updates to current-day physics are found throughout the book. New boxes include 3-D printing, GPS operation, and the Higgs boson.

The chapter-end material has been reorganized, with consecutive numbering to assist in making assignments.

I regard this as the best physics book I have ever written.

Acknowledgments

remain enormously grateful to Kenneth Ford for checking accuracy and for his many insightful suggestions. Many years ago, I admired one of Ken's books, *Basic Physics*, which first inspired me to write *Conceptual Physics*. Today I am honored that he has devoted so much of his time and energy to making this edition a beautiful book. Errors invariably appear after manuscript is submitted, so I take full responsibility for any errors that have survived his scrutiny.

For insightful additions I thank my wife Lillian, Bruce Novak, Marshall Ellenstein, and Evan Jones. I appreciate the suggestions of Tomas Brage, J. Ronald Galli, John Hubisz, David Kagan, Sebastian Kuhn, Carlton Lane, Anne Tabor-Morris, Derek Muller, Fred Myers, Chris Thron, Jeff Wetherhold, and P. O. Zetterberg.

For valued suggestions from previous editions, I thank my friends Dean Baird, Howard Brand, George Curtis, Alan Davis, Marshall Ellenstein, Mona El Tawil-Nassar, Herb Gottlieb, Jim Hicks, Peter Hopkinson, John Hubisz, Dan Johnson, David Kagan, Juliet Layugan, Paul McNamara, Fred Myers, Diane Riendeau, Chuck Stone, Lawrence Weinstein, and Phil Wolf. Others who provided suggestions in years past include Matthew Griffiths, Paul Hammer, Francisco Izaguirre, Les Sawyer, Dan Sulke, and Richard W. Tarara. I am forever grateful to the input of my Exploratorium friends and colleagues: Judith Brand, Paul Doherty, Ron Hipschman, Eric Muller, and Modesto Tamez.

I remain grateful to the authors of books that initially served as influences and references many years ago: Theodore Ashford, *From Atoms to Star*; Albert Baez, *The New College Physics: A Spiral Approach*; John N. Cooper and Alpheus W. Smith, *Elements of Physics*; Richard P. Feynman, *The Feynman Lectures on Physics*; Kenneth Ford, *Basic Physics*; Eric Rogers, *Physics for the Inquiring Mind*; Alexander Taffel, *Physics: Its Methods and Meanings*; UNESCO, *700 Science Experiments for Everyone*; and Harvey E. White, *Descriptive College Physics*.

I remain thankful to Robert Park, whose book *Voodoo Science* motivated me to include boxes on pseudoscience.

For the *Problem Solving in Conceptual Physics* ancillary, coauthored with Phil Wolf, we both thank Tsing Bardin, Howard Brand, George Curtis, Ken Ford, Herb Gottlieb, Jim Hicks, David Housden, Evan Jones, Chelcie Liu, Fred Myers, Diane Riendeau, Stan Schiocchio, John Sperry, and David Williamson for valuable feedback.

I am particularly grateful to my wife, Lillian Lee Hewitt, for new photos and assistance in all phases of book-and-ancillary preparation. I'm grateful to my niece Gretchen Hewitt Rojas for photo assistance. My greatest appreciation goes to Ken Ford and Bruce Novak, who gave particular attention to this edition. Bringing Bruce on board was very, very fortunate.

For their dedication, I am grateful to the staff at Addison-Wesley in San Francisco. I am especially thankful to Jim Smith, editor-in-chief, and Chandrika Madhavan, project editor. I thank Cindy Johnson, project manager, Carol Reitz, copyeditor, and the production staff at Cenveo Publisher Services for their patience with my last-minute editing and revising or fine-tuning requests. I've been blessed with a first-rate team!

> Paul G. Hewitt St. Petersburg, Florida

Global Edition

Pearson would like to thank and acknowledge the following people for their work on the Global Edition:

Contributors:

D. K. Bhattacharya, *Defence Research and Development Organisation* S. K. Varshney, *Indian Institute of Technology, Kharagpur*

Reviewers:

Sujin Babu, *Malaviya National Institute of Technology* Poonam Tandon, *Maharaja Agrasen Institute of Technology* Francis C. C. Ling, *The University of Hong Kong* Wow Great Uncle Paul! Before this chickie exhausted its inner space resources and poked out of its shell, it must have thought it was at its last moments. But what seemed like its end was a new beginning. Are we like chickies, ready to poke through to a new environment and a new understanding of our place in the universe?

About Science

- **1.1** Scientific Measurements
- **1.2** Scientific Methods
- 1.3 Science, Art, and Religion
- 1.4 Science and Technology
- 1.5 Physics—The Basic Science
- 1.6 In Perspective

 The circular spots of light surrounding Lillian are "pinhole" images of the Sun, cast through small openings between leaves above.
 A full view of the Sun is blocked as the Moon progresses in front of the Sun.
 The circular spots become crescents during the partial solar eclipse.

eing second best was not all that bad for Greek mathematician Eratosthenes of Cyrene (276–194 BC). He was nicknamed "beta" by his contemporaries who judged him second best in many fields, including mathematics, philosophy, athletics, and astronomy. Perhaps he took second prizes in running or wrestling contests. He was one of the early librarians at the world's then-greatest library, the Mouseion, in Alexandria, Egypt, founded by Ptolemy II Soter. Eratosthenes was one of the foremost scholars of his time and wrote on philosophical, scientific, and literary matters. His reputation among his contemporaries was immense—Archimedes dedicated a book to him. As a mathematician, he invented a method for finding prime numbers. As a geographer, he measured the tilt of Earth's axis with great accuracy and wrote Geography, the first book to give geography a mathematical basis and to treat Earth as a globe divided by latitudes and into frigid, temperate, and torrid zones.

The classical works of Greek literature were preserved at the Mouseion, which was host to numerous scholars and contained hundreds of thousands of papyrus and vellum scrolls. But this human treasure wasn't appreciated by everybody. Much information in the Mouseion conflicted with cherished beliefs held by others. Threatened by its "heresies," the great library was burned and completely destroyed. Historians are unsure of the culprits, who were likely guided by the certainty of their truths. Being absolutely certain,

having absolutely no doubts, is *certitude*—the root cause of much of the destruction, human and otherwise, in the centuries that followed. Eratosthenes didn't witness the destruction of his great library, for it occurred after his lifetime.

Today Eratosthenes is most remembered for his amazing calculation of Earth's size, with remarkable accuracy (2000 years ago with no computers and no artificial satellites—using only good thinking, geometry, and simple measurements). In this chapter you will see how he accomplished this.

1.1 Scientific Measurements

Measurements are a hallmark of good science. How much you know about something is often related to how well you can measure it. This was well put by the famous physicist Lord Kelvin in the 19th century: "I often say that when you can measure something and express it in numbers, you know something about it. When you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science, whatever it may be." Scientific measurements are not something new but go back to ancient times. In the 3rd century BC, for example, fairly accurate measurements were made of the sizes of the Earth, Moon, and Sun, and the distances between them.

How Eratosthenes Measured the Size of Earth

The size of Earth was first measured in Egypt by Eratosthenes in about 235 BC. He calculated the circumference of Earth in the following way. He knew that the Sun is highest in the sky at noon on the day of the summer solstice (which occurs around June 21 on today's calendars). At this time, a vertical stick casts its shortest shadow. If the Sun is directly overhead, a vertical stick casts no shadow at all. Eratosthenes learned from library information that the Sun was directly overhead at noon on the day of the summer solstice in Syene, a city south of Alexandria (where the Aswan Dam stands today). At this particular time, sunlight shines directly down a deep well in Syene and is reflected back up again. Eratosthenes reasoned that, if the Sun's rays were extended into Earth at this point, they would pass through the center. Likewise, a vertical line extended into Earth at Alexandria (or anywhere else) would also pass through Earth's center.

fyi

Science is the body of knowledge that describes the order within nature and the causes of that order. Science is also an ongoing human activity that represents the collective efforts, findings, and wisdom of the human race, an activity that is dedicated to gathering knowledge about the world and organizing and condensing it into testable laws and theories. Science had its beginnings before recorded history, when people first discovered regularities and relationships in nature, such as star patterns in the night sky and weather patterns-when the rainy season started or when the days grew longer. From these regularities, people learned to make predictions that gave them some control over their surroundings.

Science made great headway in Greece in the 4th and 3rd centuries BC, and spread throughout the Mediterranean world. Scientific advance came to a near halt in Europe when the Roman Empire fell in the 5th century AD. Barbarian hordes destroyed almost everything in their paths as they overran Europe. Reason gave way to religion, which plunged Europe into the Dark Ages. During this time, the Chinese and Polynesians were charting the stars and the planets and Arab nations were developing mathematics and learning about the production of glass, paper, metals, and various chemicals. Greek science was re-introduced to Europe by Islamic influences that penetrated into Spain during the 10th, 11th, and 12th centuries. Universities emerged in Europe in the 13th century, and the introduction of gunpowder changed the social and political structure of Europe in the 14th century. In the 15th century art and science were beautifully blended by Leonardo da Vinci. Scientific thought was furthered in the 16th century with the advent of the printing press.

FIGURE 1.1

When the Sun is directly overhead at Syene, it is not directly overhead in Alexandria, 800 km north. When the Sun's rays shine directly down a vertical well in Syene, they cast a shadow of a vertical pillar in Alexandria. The verticals at both locations extend to the center of Earth, and they make the same angle that the Sun's rays make with the pillar at Alexandria. Eratosthenes measured this angle to be 1/50 of a complete circle. Therefore, the distance between Alexandria and Syene is 1/50 Earth's circumference.

At noon on June 22, Eratosthenes measured the shadow cast by a vertical pillar in Alexandria and found it to be 1/8 the height of the pillar (Figure 1.1). This corresponds to a 7.1° angle between the Sun's rays and the vertical pillar. Since 7.1° is 7.1/360, or about 1/50 of a circle, Eratosthenes reasoned that the distance between Alexandria and Syene must be 1/50 the circumference of Earth. Thus the circumference of Earth becomes 50 times the distance between these two cities. This distance, quite flat and frequently traveled, was measured by surveyors to be about 5000 stadia (800 kilometers). So Eratosthenes calculated Earth's circumference to be 50 \times 5000 stadia = 250,000 stadia. This is very close to the currently accepted value of Earth's circumference.

We get the same result by bypassing degrees altogether and comparing the length of the shadow cast by the pillar to the height of the pillar. Geometrical reasoning shows, to a close approximation, that the ratio *shadow length/pillar height* is the same as the ratio *distance between Alexandria and Syene/Earth's radius.* So, just as the pillar is 8 times taller than its shadow, the radius of Earth must be 8 times greater than the distance between Alexandria and Syene.

Since the circumference of a circle is 2π times its radius ($C = 2\pi r$), Earth's radius is simply its circumference divided by 2π . In modern units, Earth's radius is 6370 kilometers and its circumference is 40,000 km.

Size of the Moon

Another Greek scientist of the same era was Aristarchus, who was likely the first to suggest that Earth spins on its axis once a day, which accounted for the daily motion of the stars. He also hypothesized that Earth moves around the Sun in a yearly orbit and that the other planets do likewise.¹ Aristarchus correctly calculated the Moon's diameter and its distance from Earth. He accomplished all this in about 240 BC, seventeen centuries before his findings were fully accepted.

¹Aristarchus was unsure of his heliocentric hypothesis, likely because Earth's unequal seasons seemed not to support the idea that Earth circles the Sun. More important, it was noted that the Moon's distance from Earth varies—clear evidence that the Moon does not perfectly circle Earth. If the Moon does not follow a circular path about Earth, it was hard to argue that Earth follows a circular path about the Sun. The explanation, the elliptical paths of planets, was not discovered until centuries later by Johannes Kepler. In the meantime, epicycles proposed by other astronomers accounted for these discrepancies. It is interesting to speculate about the course of astronomy if the Moon didn't exist. Its irregular orbit would not have contributed to the early discrediting of the heliocentric theory, which might have taken hold centuries earlier.